. PR ] 1 6 N ov 1 99 9 Splitting : Tanaka ’ s SDE revisited

نویسنده

  • J. WARREN
چکیده

1 What follows is my attempt to understand a set of ideas being developed by Boris Tsirelson. I do this by studying a specific, and I hope interesting, example. Tanaka's SDE is one of the easiest examples of a stochastic differential equation with no strong solution. Suppose X t ; t ≥ 0 is a real-valued Brownian motion starting from zero and we put B t = t 0 sgn(X s)dX s then B is also a Brownian motion and Tanaka's SDE X t = t 0 sgn(X s)dB s , (1) is satisfied. But the trajectory of B does not determine that of X. Recall Tanaka's formula |X t | = t 0 sgn(X s)dX s + L t , (2) where L t ; t ≥ 0 is the local time process of X at zero. We find |X t | = B t + sup s≤t (−B s) (3) but B does not tell us the signs of the excursions from zero made by X.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : n uc l - th / 9 81 10 45 v 1 1 2 N ov 1 99 8 Alternative evaluations of halos in nuclei

Data for the scattering of 6 He, 8 He, 9 Li, and 11 Li from hydrogen are analyzed within a fully microscopic folding model of proton-nucleus scattering. Current data suggest that of these only 11 Li has a noticeable halo. The available data for the 6 Li(γ, π +) 6 He gs reaction support the conclusion that 6 He does not.

متن کامل

ar X iv : m at h / 99 11 10 9 v 1 [ m at h . R A ] 1 5 N ov 1 99 9 – 1 – BIRKHOFF ’ S THEOREM FOR PANSTOCHASTIC MATRICES

The panstochastic analogue of Birkhoff's Theorem on doubly-stochastic matrices is proved in the case n = 5. It is shown that this analogue fails when n > 1, n = 5.

متن کامل

ar X iv : a lg - g eo m / 9 71 10 29 v 1 2 4 N ov 1 99 7 CLASSIFICATION OF EXCEPTIONAL COMPLEMENTS : ELLIPTIC CURVE CASE

We classify the log del Pezzo surface (S, B) of rank 1 with no 1-,2-,3-,4-, or 6-complements with the additional condition that B has one irreducible component C which is an elliptic curve and C has the coefficient b in B with 1 n ⌊(n + 1)b⌋ = 1 for n=1,2,3,4, and 6.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999